Â  Â  Â  Â
Â  Â  Â  Â  Â  Â

# Math Examples of Multiplication of Whole Numbers

• ## Solve 463  * 12?

We first arrange the product in form of column i.e hundreds, tens and ones and then proceed:
Hundreds       tens           ones
4                   6               3
X                    1               2
____________________________
We first multiply 463 by 2, we get

Hundreds       tens           ones
4                   6               3
X                    1               2
____________________________
8                   12                6.    Now we find that there is 12 on tens, so we retain 2 on tens place and carry 1 to hundreds place.

Hundreds       tens           ones
4                   6               3
X                    1               2
____________________________
9                    2                6    now we take 463 by 1 which is at tens place, by putting X at ones place
46                     3                X
___________________________
5 5                    5                6     We add both the product and get  the result

So 463 * 12 = 5556.

## Solve 367 * 3?

We first arrange the product in form of column i.e. hundreds, tens and ones and then proceed:
Hundreds    tens  ones
3            6       7
X                      3
____________________________ On multiplying by 3 we get
21
Here we get 21 at ones place so we retain 1 and carry 2 at tens place. This 2 is added to 18 at tens ( 6 * 3 ) + 2 = 20

Hundreds    tens  ones
3            6       7
X                      3
____________________________
20          1
--------------------------------------------------
Here we get 20 at tens place so we retain 0 and carry 2 at hundreds place. This 2 is added to ( 3 X 3 ) = 9 + 2 = 11

Hundreds    tens  ones
3            6       7
X                      3
____________________________
11          0          1
-------------------------------------------------

## Multiply 180 by 0?

We know  by zero property of multiplication of the Numbers, that any number multiplied by 0, the result is always 0
So 180 X 0 = 0

## Find the product of 356 * 1?

We know by Identity Property of Multiplication, that when any number is multiplied by 1, the product is the number itself, so
=> 356 * 1 = 356.

## Find the product of   385 * 20?

First we write the Numbers in their proper places and get:
hundreds            tens     ones
3                       8          5
X                       2          0
________________________________
0                        0          0   we first multiply all the digits by 0, which gives 0 at all the places.
Now we multiply 385 by 2 . Before this  we put X at ones place.  so we get

hundreds            tens     ones
3                       8          5
X                       2          0
________________________________
0                        0          0

6                       16         X  This 16 is at tens place, so we retain 6 at tens place and carry 1 to hundreds place
_______________________________

hundreds            tens     ones
3                       8          5
X                       2          0
________________________________
1+ 0                     0          0

6                       6         X
________________________________
7                       6          0
________________________________

## Find the product of 135 * 900?

In such questions, we first multiply 135 by 9 and then multiply it by 100, i.e. we put 2 zeroes with the answer on the right hand side.
Lets see how to proceed:
hundreds     tens      ones
1                 3            5
X                              9
________________________
45, we find ( 5 X 9 = 45 ), we write 5 at tens place and carry 4 to be added to tens place.

hundreds     tens      ones
1                 3            5
X                              9
________________________
(27 +4)      5
hundreds     tens      ones
1                 3            5
X                              9
________________________
31           5
_________________________
Now from 31, 1 is left at tens place and 3 is carried over to hundreds place
hundreds     tens      ones
1                 3            5
X                              9
________________________
(9+3)             1         5
________________________
Adding 9 + 3 = 12 , so we get

hundreds     tens      ones
1                 3            5
X                              9
________________________
12               1            5
________________________

Now we multiply 1215 with by 100, we get:
= 1215 X 100,
= 121500.

## Multiply 300 with 20?

In such problems, when we have 300 * 20,
So, it can be written as 3 * 2 * 1000,
= 6 * 1000,
= 6000.

## Multiply 678495 * 3456 * 0 * 352?

We find the sum very complicated and rather difficult to solve. But remember when any number is multiplied by 0, the result is always 0. This property of multiplication is called the property of multiplication with 0. So we get the result of this problem without actually solving the question,
= 0.

## Find the product of 840 * 1?

We know that any number multiplied by 1 gives the same number as the result. This is called the Identity Property of Multiplication.
Thus, when 840 * 1 = 840.

## Multiply 240 by 23?

Here we first multiply 240 by 3, which is at ones place and then multiply 240 by 20 (as 2 is at tens place, then we add both the digits to get the desired result).
Hundreds   tens   ones
2                4        0
X         3
___________________________
7               2          0 (we get 7   as 3 * 2 = 6 add 1, which is carried from tens place)
Now

Hundreds   tens   ones
2                4        0
X         2
___________________________
4               8          0
Thus 240 X 20 = 4800

Now to get the result of 240 X 23, we add 4800 + 720 and get,

4  8  0  0
+      7  2  0
___________
5  5  2   0
_______________

## Solve 23 * 5?

We first arrange the product in form of column of tens and ones and then proceed:
Tens      Ones
2             3
X              5
____________
15, we write 5 in ones place and take 1 as a carry over, so it becomes

Tens      Ones
2             3
X              5
____________
11          5

Here we multiply 2 * 5 = 10 and add 1 to it, so at ones place we get 5 and at tens place we get 11.
So  we have 23 X 5 = 115.

## Multiply 6009 by 1?

In such cases, we need not to apply column method to get the solution to this.
As any number is multiplied by 1, the result is same number. This property is called the Identity Property of Multiplication.
So we get:
= 6009 * 1,
= 6009.

## Multiply 345 by 200?

In such problems we can write them as
345 * 2 * 100,
So first we solve 345 * 2
Write the digits as per their place value and then multiply:

Hundreds    Tens    Ones
3               4         5
X                          2
______________________
6                 8         10, from 10, 0 retains the ones value and 1 is carried over to tens place,
We get,
Hundreds    Tens    Ones
3               4         5
X                          2
______________________
6                 9           0
______________________
Now we multiply 690 by 100,
= 690 * 100,
= 69000.

## Multiply 800 by 17?

Hundred   tens  ones
8              0       0
X              1       7
_______________________
56               0       0, we put X at ones place and then multiply 800 by 1, we get

Hundred   tens  ones
8              0       0
X              1       7
_______________________
56               0       0
8 0              0       X Now we add the two rows and get the result
______________________
13  6              0        0
________________________

## Multiply 450 X 25?

First we arrange the digits at proper place and then proceed:

Hundreds     tens      ones
4                5            0
X                2            5
____________________________
20            25             0    from 25 of tens place, 2 is carried to hundreds place, we get
And get:

Hundreds     tens      ones
4                5            0
X                2            5
____________________________
22               5            0 ,   Now we place X at once place  and then multiply 450 by 2, we get

Hundreds     tens      ones
4                5            0
X                2            5
____________________________
22               5            0 ,
9 0              0            X
___________________________
11 2              5            0
___________________________